CopperPen Banner
Pressemitteilungen
Forschung zeigt dass Kupfer Noroviren tötet. Universität Southampton, 28. Mai 2013. Mehr...

Trockene Kupferoberflächen töten Bakterien beim Kontakt. American Society for Microbiology, Februar 2011. PDF

Diverse Informationen zu antimikrobiellem Kupfer
Diashow zu antimikrobiellem Kupfer, 2010 (englisch). PDF

Antibakterielle Eigenschaften von Kupfer. Sonderdruck, Deutsches Kupferinstitut, 2007. PDF

Testmethoden für antimikrobielles Kupfer. US Environmental Protection Agency, 2006 (englisch). PDF

Kupfer - Vorkommen, Gewinnung, Eigenschaften, Verarbeitung, Verwendung. Deutsches Kupferinstitut, 1997. PDF

Deutsch  English  Français
 
 

Wissenschaftliche Studien über die antimikrobielle
Eigenschaft von Kupfer

Champagne, V. K. and Helfritch, D. J. (2013) A demonstration of the antimicrobial effectiveness of various copper surfaces. J. Biol. Eng 7, 8. PDF

Mathews, S., Hans, M., Mucklich, F. and Solioz, M. (2013) Contact killing of bacteria on copper is suppressed if bacteria-metal contact is prevented and is induced on Iron by copper ions. Appl. Environ. Microbiol. 79, 2605-2611. PDF

Salgado, C. D., Sepkowitz, K. A., John, J. F., Cantey, J. R., Attaway, H. H., Freeman, K. D., Sharpe, P. A., Michels, H. T. and Schmidt, M. G. (2013) Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect. Control Hosp. Epidemiol. 34, 479-486. PDF

Schmidt, M. G., Attaway Iii, H. H., Fairey, S. E., Steed, L. L., Michels, H. T. and Salgado, C. D. (2013) Copper continuously limits the concentration of bacteria resident on bed rails within the intensive care unit. Infect. Control Hosp. Epidemiol. 34, 530-533. PDF

Souli, M., Galani, I., Plachouras, D., Panagea, T., Armaganidis, A., Petrikkos, G. and Giamarellou, H. (2013) Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary Gram-negative clinical isolates. J. Antimicrob. Chemother. 68, 852-857. PDF

Allion, A., Van Hecke, B., Boubetra, A. and Lenestour, F. (2012) Methodological approach of antibacterial surfaces characterization. Metallurg. Ital. 1, 29-34. PDF

Espirito Santo, C., Quaranta, D. and Grass, G. (2012) Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiol. Open 1 , 46-52 Hong, R., Kang, T. Y., Michels, C. A. and Gadura, N. (2012) Membrane lipid peroxidation in copper alloy mediated contact killing of Escherichia coli. Appl. Environ. Microbiol. 78, 1776-1784. PDF

Karpanen, T. J., Casey, A. L., Lambert, P. A., Cookson, B. D., Nightingale, P., Miruszenko, L. and Elliott, T. S. (2012) The antimicrobial efficacy of copper alloy furnishing in the clinical environment: a crossover study. Infect. Control Hosp. Epidemiol. 33, 3-9. PDF

O'Gorman, J. and Humphreys, H. (2012) Application of copper to prevent and control infection. Where are we now? J. Hosp. Infect. 81, 217-223. PDF

Rai, S., Hirsch, B. E., Attaway, H. H., Nadan, R., Fairey, S., Hardy, J., Miller, G., Armellino, D., Moran, W. R., Sharpe, P., Estelle, A., Michel, J. H., Michels, H. T. and Schmidt, M. G. (2012) Evaluation of the antimicrobial properties of copper surfaces in an outpatient infectious disease practice. Infect. Control Hosp. Epidemiol. 33, 200-201. PDF

Schmidt, M. G., Attaway, H. H., Sharpe, P. A., John, J., Jr., Sepkowitz, K. A., Morgan, A., Fairey, S. E., Singh, S., Steed, L. L., Cantey, J. R., Freeman, K. D., Michels, H. T. and Salgado, C. D. (2012) Sustained reduction of microbial burden on common hospital surfaces through the introduction of copper. J. Clin. Microbiol. 50, 2217-2223. PDF

Tian, W. X., Yu, S., Ibrahim, M., Almonaofy, A. W., He, L., Hui, Q., Bo, Z., Li, B. and Xie, G. L. (2012) Copper as an antimicrobial agent against opportunistic pathogenic and multidrug resistant Enterobacter bacteria. J. Microbiol. 50, 586-593. PDF

Warnes, S. L., Caves, V. and Keevil, C. W. (2012) Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ. Microbiol. 14, 1730-1743. PDF

Zhu, L., Elguindi, J., Rensing, C. and Ravishankar, S. (2012) Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica. Food Microbiol. 30, 303-310. PDF

Ibrahim, M., Wang, F., Lou, M. M., Xie, G. L., Li, B., Bo, Z., Zhang, G. Q., Liu, H. and Wareth, A. (2011) Copper as an antibacterial agent for human pathogenic multidrug resistant Burkholderia cepacia complex bacteria. J. Biosci. Bioeng. 112, 570-576. PDF

Warnes, S. L. and Keevil, C. W. (2011) Mechanism of copper surface toxicity in vancomycin-resistant enterococci following 'wet' or 'dry' contact. Appl. Environ. Microbiol. 77, 6049-6059. PDF

Casey, A. L., Karpanen, T. J., Adams, D., Lambert, P. A., Nightingale, P., Miruszenko, L. and Elliott, T. S. J. (2011) A comparative study to evaluate surface microbial contamination associated with copper-contain and stanless steel pens used by nurses in the critical care unit. Am. J. Infect. Control, in press. PDF

Grass, G., Rensing, C. and Solioz, M. (2011) Metallic copper as an antimicrobial surface. Appl. Environ Microbiol., in press. PDF

Elguindi, J., Moffit, S., Hasman, H., Andrade, C., Raghavan, S. and Rensing, C. (2011) Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper-resistant bacteria. Appl. Microbiol. Biotechnol., in press. PDF

Espirito Santo, C. E., Lam, E. W., Elowsky, C. G., Quaranta, D., Domaille, D. W., Chang, C. J. and Grass, G. (2011) Bacterial killing by dry metallic copper surfaces. Appl. Environ Microbiol. 77, 794-802. PDF

Quaranta, D., Krans, T., Espirito Santo, C., Elowsky, C. G., Domaille, D. W., Chang, C. J. and Grass, G. (2011) Mechanisms of yeast contact-killing on dry metallic copper surfaces. Appl. Environ. Microbiol. 77, 416-426. PDF

Solioz, M. (2011) Wirkung und Gebrauch von antimikrobiellem Kupfer. In Angewandte medizinische Technik. Würzburg, 2011. PDF

Casey, A. L., Adams, D., Karpanen, T. J., Lambert, P. A., Cookson, B. D., Nightingale, P., Miruszenko, L., Shillam, R., Christian, P. and Elliott, T. S. (2010) Role of copper in reducing hospital environment contamination. J. Hosp. Infect. 74, 72-77. PDF

Marais, F., Mehtar, S. and Chalkley, L. (2010) Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility. J. Hosp. Infect. 74, 80-82. PDF

Mikolay, A., Huggett, S., Tikana, L., Grass, G., Braun, J. and Nies, D. H. (2010) Survival of bacteria on metallic copper surfaces in a hospital trial. Appl. Microbiol. Biotechnol. 87, 1875-1879. PDF

Molteni, C., Abicht, H. K. and Solioz, M. (2010) Killing of bacteria by copper surfaces involves dissolved copper. Appl. Environ. Microbiol. 76, 4099-4101. PDF

Weaver, L., Noyce, J. O., Michels, H. T. and Keevil, C. W. (2010) Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus. J. Appl. Microbiol. 109, 2200-2205. PDF

Michels, H. T., Noyce, J. O. and Keevil, C. W. (2009) Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Lett. Appl. Microbiol. 49, 191-195. PDF

Espirito Santo, C., Taudte, N., Nies, D. H. and Grass, G. (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl. Environ. Microbiol. 74, 977-986. PDF

Mehtar, S., Wiid, I. and Todorov, S. D. (2008) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. J. Hosp. Infect. 68, 45-51. PDF

Weaver, L., Michels, H. T. and Keevil, C. W. (2008) Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. J. Hosp. Infect. 68, 145-151. PDF

Wheeldon, L. J., Worthington, T., Lambert, P. A., Hilton, A. C., Lowden, C. J. and Elliott, T. S. (2008) Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J. Antimicrob. Chemother. 62, 522-525. PDF

Noyce, J. O., Michels, H. and Keevil, C. W. (2007) Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl. Environ. Microbiol. 73, 2748-2750. PDF

Noyce, J. O., Michels, H. and Keevil, C. W. (2006) Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J. Hosp. Infect. 63, 289-297. PDF

Noyce, J. O., Michels, H. and Keevil, C. W. (2006) Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl. Environ. Microbiol. 72, 4239-4244. PDF

Wilks, S. A., Michels, H. T. and Keevil, C. W. (2006) Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. Int. J. Food Microbiol. 111, 93-98. PDF

Wilks, S. A., Michels, H. and Keevil, C. W. (2005) The survival of Escherichia coli O157 on a range of metal surfaces. Int. J. Food Microbiol. 105, 445-454. PDF

Faundez, G., Troncoso, M., Navarrete, P. and Figueroa, G. (2004) Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol. 4, 1-7. PDF

Kusumaningrum, H. D., Riboldi, G., Hazeleger, W. C. and Beumer, R. R. (2003) Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. Int. J. Food Microbiol. 85, 227-236. PDF

Robine, E., Boulange-Petermann, L. and Derangere, D. (2002) Assessing bactericidal properties of materials: the case of metallic surfaces in contact with air. J. Microbiol. Methods 49, 225-234. PDF

Kuhn, P. J. (1983) Doorknobs: a source of nosocomial infection? PDF

Allgemeine Geschäftsbedingungen   Datenschutz   Rechtliche Hinweise 
Copyright © Solioz Scientific. CopperPen ist eine eingetragene Marke von Solioz Scientific.